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Abstract: Diastereoisomeric pure 2-(1-hydroxyalkyl)pyridines have been prepared from chiral
ketones and checked ay enannoselective catalysts 1n the addition of diethylzine to aldehydes:
enantioselectivities up to 82% were obtained

Optically active hydroxyalkylpyridines have been used in asymmeitric synthesis: three derivatives of this
compound class having the ters-butylmethanol group as common substituent have been reported. Sharpless and
co-workers] have synthesized the optically active (R,R)-2,6-bis(2,2-dimethyl-1-hydroxypropyl)pyridine (1)
and prepared the corresponding dioxomolybdenum(VI) and titanium{IV) complexes which were used as
asymmetric oxidation catalysts. Bolm and co-workers2,3 have prepared the (+)-(R,R)-6,6"-bis(2,2-dimethyl-1-
hydroxypropyl)-2,2-bipyridine2 (2) and (S)-2-phenyl-6-(2,2-dimethyl-1-hydroxypropylpyridine3 (3) which
have been found effective enantinselective catalysts in the addition of diethylzinc to benzaldehyde and in the
conjugated addition of diethylzinc o enones. The preparation of these ligands requires a step of stereoisomer
differentiation: compounds 2 and 3 mvolve the asymmetric reduction of a prochiral ketone, whereas 1 requires
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a tedious resolution procedure.
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With the aim of obtaining optically active pyridine-carbinols having the same features through a more
directed way we have prepared diastereoisomeric pure 2-(1-hydroxyalkyl)pyridines and checked these
compounds us enantioselective catalysts in the addition of diethylzinc to aldehydes.

The 2-(1-hydroxyalkyDpyridines 6-8 were prepared by condensation of 2-pyridyllithium (§) with
optically active naturaily occurring ketones (Scheme 1). Pyridines 6-8 were obtained as sole diastereomers4:
configurations are reported in Scheme 1. The yield (12-60%, based on 2-bromopyridine) greatly depends upon
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the nature of ketone, dropping on passing from the moderately sterically-crowded menthone (60%) to the very

sterically-crowded camphor (12% ), an intermediate situation being found in the case of nopinone (39%).
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We have also prepared the (+)-(R)-(2,2-dimethyl-1-hydroxypropyl)pyndine (10) in order to define if the
enantioselective ability of 2-pyridyl-carbinols could be affected by the presence of an another substituent on 6-
position of the pyndine ring, as in compounds -3 Compound 10 was obtained in 53% overall yield through
condensation of 2-pyridyllithium with 2,2-dimethylpropane nitrile, followed by asymmetric reduction of the
ketone 9 with (-)-B-chlorodusopinocampheylborane3 (Scheme 2). The alcohol (+)-(R)-100 was obtained in

91% ee, as determined by means of [9F-NMR of the corresponding ester of (+)-a-methoxy-a-(trifluoromethyl)
phenylacetc acid ((+)MPTA).
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a: t-BuCN, 75 % b: (-)-p-chlorodiisopino-campheylborane, THF,
-25 °C., 15d,70 %, 91 % e¢e;
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Enantioselective additions of diethylzine to aldehydes in the presence of catalytic amounts (3 mol%) of 6-

8,10 were carried out in hexane/ether at room emperature (20 "C)7. The data obtained using chiral pyridines 6-

8,10 are summarized in the Tuble.

Table: Asymmetric Addiion of Drethylzinc 10 Aldehydesa

optically active carbinol

ligand aldehyde convb {a]25p eeC

% (c, solvent) %
6 benzaldehyde 93 -9.7 (6. CHCI3) 21 ()
7 benzaldehyde 93 +17.4 (5, CHCI3 38 (R)
] benzaldehyde 93 +20.0 14, CHCl3) 44 (R)
10 benzaldehyde 100 +34.0 (5, CHCI3) 82 (R)d
6 3-phenylpropandl 89 +7.0 (5, EtOH) 26 (5)
7 3-phenylpropanal g1 -5.4 (5, EtOH) 20 (R)
8 3-phenylpropanal 87 -10.2 (5, EtOH) 3B (R)
10 3-phenylpropanal 87 -15.2 (5, EtOH) 63 (Ryd
6 3-phenylpropynal 91 -1.7 3, E0) 9
7 3-phenylpropynal 93 +0.3 (3, ErpO) 1(R)
8 3-phenylpropynal 92 +3.9 (3, EtpO) 21 (R)
10 3-phenylpropynal 90 +7.3 (3, EnnO) 43 (R)d

@) Reaction carried out at room temperature in hexanefether with a molar ratio
EryZn/aldehyde/ligand = 2/1/0.06. B GLC yields of the erude products. €) Verified
both by GLC and 19F NMR of the (+}MPTA. 4) Corrected for the minimum optical
purity of (+)-(R)-10.

In all the examined cases, the ethyl carbinols weie obtained in good chemical yields, whereas the
enantioselectivity ranges from very low (1%) 10 moderately high (82%). The daa of the Table indicate that
higher asymmetric inductions are achicved with the ligand 10. Whereas 8 appears to be, in all cases the most

effective ligand among the ligands derived fron natural compounds.
It is important to note that 10 gives a lower ee with respect 1o compounds 2,3. This result indicates that a
predictable improvement of the stereo differentiating ability of 2-pyridyl-carbinols could be obtained by
introduction of a suitable substituznt on the 6-position of the pyridine ring.
Efforts to achieve a higher stereo selectivity by modification of the 2-(1-hydroxyalkyl)pyridines presented

here are under study n these laboratories.
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